Home Facts industry

Hybrid Ion Rocket Engine

Hybrid Ion Rocket Engine

Write: Lalage [2011-05-20]

Hybrid Ion Rocket Engine


The greatest advancement to jet aviation since the first Heinkel He178 V1 took off was, of course, the afterburner. The greatest thing that could happen to the scientific community would be if it was possible to create an afterburner-like system for a rocket engine, but you cannot ignite a gas that is already ignited, and even if you could it would melt your nozzle.
What you could do though, is ionize and accelerate the already ignited gas to propel the rocket much faster, combining the concepts of Gridded Electrostatic Ion Thrusters and a Normal solid, liquid, or hybrid rocket.

This idea requires creating a rocket engine with strong electron injectors in the combustion chamber, positive and negative grids inside the nozzle, and magnetic rings throughout so that, in effect, the combustion chamber becomes a cathode tube and the nozzle becomes a gridded electrostatic ion thruster.

The construction of the rocket requires the nozzle and engine to be made of metal with low conductivity such as cast iron(Fe with C content of 2.5-4.0% and Si content of 1-3%), steel (Fe with C content of 0.2-2.1%), or titanium (Ti), while the electrostatic grids must be made of a metal with high conductivity and a very high melting point such as titanium carbide (TiC), tungsten carbide(WC), or rhenium (Re). Based on the law of conservation of energy, the electricity provides more energy with less mass.

This ionization would take the already powerful rocket blast and speed up each individual atom to make the rocket blast exit the nozzle at a higher velocity

With every plan though, there are flaws that require solutions. "You could ionize and accelerate the exhaust of a large rocket if you had a big battery or power supply available. The power levels of big chemical engines are several mega watts, and carrying such a big power supply would be very impractical," was Professor Paulo Lozano's comment.

Likewise Professor Manuel Martinez-Sanchez commented "It would take heroic power levels to make any noticeable difference in the rocket's thrust."

The problem they seem to agree on is producing enough electricity would add to the mass of the rocket, cutting down on acceleration. There are three solutions to this problem. The first is by cutting curved grooves into the nozzle to rifle it so that you may put smaller stabilizer fins on it to reduce drag (spinning of rocket in practice by UP Aerospace, New Mexico) then adding a Lithium Air battery (Li2O or Li2O2, under development by MIT) to the rocket that produces 11140 Wh/kg.

This newly developed battery is much lighter and more powerful than any battery we currently have so would be an excellent candidate. The second option is to reserve the rocket for only in space application, where it could have large solar panels without the cost of the drag they would cause.

If you need any more details of the above news and/or products, please visit Chinatungsten Online, or contact us directly.
Disclaimer: The article is only reflecting the opinions of the author. We have no responsibility to prove the originality and authenticity of the content, words and/or pictures. You readers should just take it as reference and check the details by yourselves. And the content is not a suggestion for investment decision. The investor takes his or her own risks if he or she operates accordingly. If you have any dissent about the contents above, please contact the relevant author, or the webmaster. We will try our best to assist the dealing of the related issues. Thanks for your visit and cooperation.